

TECHNICAL-FINANCIAL EVALUATION OF RAINWATER HARVESTING SYSTEMS IN COMMERCIAL BUILDINGS - Case studies from Sonae Sierra in Portugal and Brazil

C.M. Silva Instituto Superior Técnico V. Sousa Instituto Superior Técnico I. Ponces Instituto Superior Técnico

OUTLINE

- 1. Introduction
- 2. Methodology
- 3. Colombo Shopping Center
 - 3.1. Validation
 - 3.2. Parametric analysis
- 4. Case Studies
 - 4.1. Estação Viana Shopping (Viana do Castelo, Portugal)
 - 4.2. Boavista Shopping (São Paulo, Brazil)
- 5. Final remarks

1. INTRODUCTION

P - precipitation
CA - catchment area
RC - runoff coefficient
ff - first flush
TC - tank capacity
TDWC - total daily water consumption
NPDC - non potable daily consumption
tw - total water
cw - collected water
iwvt - inicial water volume in the tank
fwvt - final water volume in the tank
(t-1) - indicates the day before
uw - used water
pfbc - precip. fraction before consumption
sw - stored water

3. COLOMBO SHOPPING CENTER

3. COLOMBO SHOPPING CENTER

3.1. Validation

Variables	Value
Collection area (m²)	40000
Tank volume (m³)	150
Runoff coefficient	0,8
First flush (mm)	1,0
Annual continuity	No
Fraction of tank full at the beginning of the year	0
Fraction of the precipitation before consumption	0

Case	Precipitation	Consumption	Non-potable savings	
Measured	Real	Real 9,4 %		
Simulated	Cais do Sodré	Real (monthly average)	9,4 %	

3.2. Parametric analysis

3.2. Parametric analysis

The payback period varied between 18 and 42 years, with the most favourable situation corresponding to a catchment area of 9.920 m² and a 200m³ tank

4.2. Boavista Shopping (São Paulo, Brazil)

4.2. Boavista Shopping (São Paulo, Brazil)

4.2. Boavista Shopping (São Paulo, Brazil)

Case	Tank (m³)	Rainwater used (m³/ano)	Annual savings (BRL/ano)	Implementation costs (BRL)	Operation and maintenance costs (BRL/ano)	Payback period
B1 4190 m²	100	3802,3	94107,4	129968,0	2599	18 months
	150	4173,1	103285,3	148173,3	2963	18 months
	200	4344,0	107514,5	165524,7	3310	20 months
B2 12240 m²	200	8337,4	206351,5	165524,7	3310	10 months
	300	9563,7	236700,6	200863,0	4017	11 months
	400	10323,0	255495,0	236201,2	4724	12 months

5. FINAL REMARKS

- Rainwater harvesting systems design should be case specific due to the differences on water consumption and rainfall amounts and patterns
- Consumption pattern on commercial buildings tend to have small daily variability but potentially high monthly variability
- Commercial buildings (excluding the food court areas) present high fractions and significant amounts of non-potable water use, favouring the use of solutions such as rainwater harvesting
- Water savings potential are highly detached from financial viability of the investments:
 - Water cost vs investment cost
 - Constraints from standards (water quality and mix of public supply with alternative water sources)