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RWH & need to be smart? b

* High ranked intervention in urban water systems (UWS) are
those supporting all water supply, stormwater and
wastewater subsystems such as rainwater harvesting (RWH).

 Water recycling schemes received a lot of attention as a
reliable alternative water resource.

 RWH schemes usually harvest rainwater from impervious
surfaces for non-potable uses (irrigation and toilet flushing).

* This configuration in conventional RWH schemes is static, i.e.
non-smart, as water supply based on pre-defined priorities.

* The main disadvantage is that water volume in the tank
cannot be controlled (may be overflowed during abundant
rainfall periods).
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Key questions in Smart RWH schemes?
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e Can we make the RWH system smarter by:
-allocating rainfall more intelligently? S
-maximising the RWH impact on attenuate flood? JL )
* What are the limits of water sources and uses to make RWH

scheme as being smart system?

 What specifications are required to setup smart RWH scheme?

Smart system

Traditional (non-smart) system
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eExplore the potentials of a smart RWH in an integrated UWS for
reducing urban flooding while supplying water for non-potable use.

e |dentify the optimal operation/parameters of smart RWH to achieve
the best performance in the integrated UWS

e Compare smart RWH with non-smart RWH schemes an the status
quo (i.e. no RWH).
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 Smart RWH scheme operates based on sensors to measure
rainfall depth/water volume in tank and actuators (i.e.
valves/pumps) to proactively control volume/level in tank.

* Required water demands are assumed to be supplied from the
RWH tank if water is available in tank otherwise mains water.

* Multi-objective optimisation model used to identify the best
operation/parameters for the smart RWH scheme using NSGA-II

Female AC Plug
to Pump Plug

Source: http://www.sma rtwatertech.co.nz
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* Smart RWH actuators release specific water volume (R,) as a
function of water volume (V,) and inflow into the tank (/,):

* R=a(V+) i=1,..,12
a and b are two parameters with different values for each

calendar month, which are optimised.

* Released water (R,) allows tank to keep some space free and on
standby for future rainfall and mitigate potential flooding.
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Multi-objective optimisation model

~1.minimise total potable water supplied from the
mains (i.e. conventional distribution system)

Objectives— 2.minimise total urban flooding (i.e. total volume of
stormwater which exceeds the capacity of a sewer

system in a one-year simulation).

—

Total number of decision variables is equal to 24 coefficients (a,b;)
for 12 months
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Month#1 Month#2 Month#11 Month#12

Structure of genes (decision variables)
for each chromosome (solution)
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* The objective functions of the optimisation model

are

calculated based on the performance assessment of these
schemes in an integrated UWS, which is undertaken by using

the WaterMet? model:
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Methodology (Urban System)
Model input: Water resource : Model output:

o Weather data time series o Water flow
¢ Inflow time series to Water el o Energy flow
water resources W ol o GHG flow
e Database of pipeline Surface water @ | ~ Precipitation o Acidification flow
characteristics S : e Eutrophication flow
E t :
WTW vaporation o Material flux
o Characteristics of | | e Chemical flux
Components Including: Trunkj main o Pollutant flux
e Transport/Storage Dam reservoir S A o Cost flux
capacity P—— - iy
e Consumption per unit Distribution, [ -
volume of water for: main &
o Energy sources Grojh dwvater _ _ Domestic water
e Chemicals Service reservoir
e Resource recovery
e Operational cost Sewer
_ “etwork
i Discharge " _ i
. ther demand per capita/ Sea, ocean ! ge ’ Recycling Industrial water
Daily water demand , ——
e Demographic information
¢ Hydrologic characteristics
*  Number of properties Wetland g Storm water drainage network, CSO, STO _ Plant irigation
Receiving water Subcatchment 11
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Water/Energy

WaterMet? Conceptual Model

Water Resources

Water Supply Conduits

Water Treatment Works

Trunk Mains Water Supply
Subsystem
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* Single subcatchment with two associated ’

local areas with/without RWH schemes \Vl

WTW1 WTW2

* Simulation: daily time step with a duration T ™2

of one year time horizon

*  RWH collects runoff from roofs, roads and
pavements and to supply water for toilet
flushing and garden watering (irrigation).

* 320,000 household properties.

* Household RWH tank capacity: 3 m3

Existing water supply conduit/ o _
trunk main/distribution main Existing sewer network

...... > Existing overflow/discharge
into receiving water

* Four tank capacities in proportion to the full tank capacity are analysed:

1) 12.5% of full capacity, 0.06 MCM; 2) 25% of full capacity, 0.12 MCM;
* 3) 50% of full capacity, 0.24 MCM; 4) full capacity, (100%) 0.48 MCM.
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different sizes of RWH tank

Pareto optimal solutions for
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Flood (% of Total Excess Stormwater)

O

RHW-Capacity=0.48MCM + RHW-Capacity=0.24MCM o RHW-Capacity=0.12MCM x RHW-Capacity=0.06MCM

O
(\O)

Ne
-

o0
o0

o0
@)}

0
~

o

: A
EEEF iy Om
T,
Hy
%,
%&%%
H
+++ +4 Jq:w
ﬂ%%ﬁ% Py 4o C
CDC@@%

| | | | | | | |

92 92.5 93 93.5 94 94.5 95 95.5 96

% of Potable Water Supplied from the Mains

96.5

97




{wat":” Monthly aggregated results of three

\"

UNIVERSITY OF
WEST LONDON

solutions of smart schemes
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Pareto Front for Impact of different RWH size
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Pareto Front for Impact of Area collected rainwater
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Pareto Front for Impact of Area collected rainwater
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* New concept of smart RWH schemes was presented for real-
time control & improvement of integrated UWS performance.

 Multi-objective operation identified tank configurations and
control storage volume based on water demand and inflow.

 Considerable impact can be obtained on the flood peak
attenuation and reliable water supply from the mains.

* The best performance of smart RWH depends on selecting
proper RWH configuration otherwise no difference may occur
between smart & non-smart RWH.

* Smart irrigation system and rainfall prediction models can be
coupled with smart RWH for a better water demand allocation.

 Machine learning (e.g. ANN) can further improve smartness
process 19
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