Evaluating FlushRain Retrofittable Rainwater Harvesting: A Pilot Study

Safe&SuRe Water management

Peter Melville-Shreeve, Sarah Ward, David Butler.

University of Exeter, Centre for Water Systems.

Summary

- 1. RWH configurations for UK houses
- 2. FlushRain Pilot Installations
- 3. Results
- 4. Messages

RWH for UK houses

Residential RWH has long payback periods and is difficult to retrofit. (Roebuck, 2012).

Retrofit costs are high ~£5k?

High energy use?

Retrofittable RWH?

Roof located RWH with suction pump

- Loft located tank
- Low storage capacity < 1 m³
- Low cost to retrofit

~£1k installed?

Small tanks = less benefit?

Low energy use?

How does it work?

A) Chamber connected to downpipe

B) Illustration of chamber discharging to downpipe

C) Illustration of chamber being pumped empty

Research Questions

RQ1: What reduction in annual water demand was achieved by deploying the FRWH system?

RQ2: What electricity consumption was needed to operate the FRWH system?

RQ3: What were the highest and lowest temperatures experienced in the header tank?

RQ4: What proportion of annual rainfall was captured and used by the FRWH system.

Methods: Install and Monitor

Methods: Install and Monitor

Results – Tank Levels and Spill Simulation

Water Demand Reduction: Yield

Energy Cost

RQ2: What electricity consumption was needed to

operate the FRWH system?

- $3.08 \text{ kWh/m}^3 = 1.16 \text{kg CO}_2 \text{e}$
- £6.95/year
- (Lab = 0.12 kWh/m^3 ?)

Water Temperature

RQ3: What are the highest and lowest temperatures experienced in the header tank?

- Max summer temperature of 25.3°C
- Min of 7.7°C
- Mains water topups (i.e. chlorinated water) on 262 days

Source Control

RQ4: What proportion of annual rainfall was captured and used by the FRWH system.

- 39.5m³ rainwater fell on roof.
- 15m³ used, giving 38% annual reduction in flows to combined sewer.
- Max 1 day storm = 1.8m³ (flooding locally)
- Loggers show 0.28m³ intercepted (15% reduction).

Results – Tank Levels and Spill Simulation

RWH for stormwater control?

- 30 min event (22mm) has a RP of approx. 1 in 18 years.
- RWH system reduced the runoff from the property to an equivalent rainfall intensity of 13.5mm/hour
- Giving a resulting RP of approximately 7.5 years

WC Usage

Key Messages

- RWH can come in many shapes and sizes.
- It can be retrofitted for ~£1,500/house, ~3x cheaper than existing systems.
- 70% of UK houses that will exist in 2050 have already been constructed.
- Where Demand is high... tanks are likely to be empty... So Yield reduces, but...
- When tanks are empty, some level of stormwater control can be achieved.

Key Messages

Carbon costs still need refinement as 1m³ rainwater... 1.16KgCO₂e

Carbon dioxide equivalent (CO2-e)

